
V1.01

ANGULAR
CHEAT SHEET

LUIS RAMIREZ JR.

https://zerotomastery.io/about/instructor/luis-ramirez-jr?utm_source=pdf_content&utm_medium=pdf_link&utm_campaign=angularcheatsheet

HEEELLLOOOOO!

I’m Andrei Neagoie, Founder and Lead Instructor of the Zero To Mastery Academy.

After working as a Senior Software Developer over the years, I now dedicate 100% of my time to

teaching others valuable software development skills, help them break into the tech industry, and

advance their careers.

In only a few years, over 600,000 students around the world have taken Zero To Mastery courses

and many of them are now working at top tier companies like Apple, Google, Amazon, Tesla, IBM,

Facebook, and Shopify, just to name a few.

This cheat sheet, created by our Angular instructor (Luis Ramirez Jr.) provides you with the key

Angular concepts that you need to know and remember.

If you want to not only learn Angular but also get the exact steps to build your own projects and

get hired as a developer, then check out our Career Paths.

Happy Coding!

Andrei

Founder & Lead Instructor, Zero To Mastery

Andrei Neagoie

P.S. I also recently wrote a book called Principles For Programmers. You can download the first

five chapters for free here.

https://zerotomastery.io/?utm_source=pdf_content&utm_medium=pdf_link&utm_campaign=angularcheatsheet
https://zerotomastery.io/testimonials/?utm_source=pdf_content&utm_medium=pdf_link&utm_campaign=angularcheatsheet
https://zerotomastery.io/testimonials/?utm_source=pdf_content&utm_medium=pdf_link&utm_campaign=angularcheatsheet
https://zerotomastery.io/career-paths/?utm_source=pdf_content&utm_medium=pdf_link&utm_campaign=angularcheatsheet
https://ebook.zerotomastery.io/principles?utm_source=pdf_content&utm_medium=pdf_link&utm_campaign=angularcheatsheet
https://ebook.zerotomastery.io/principles?utm_source=pdf_content&utm_medium=pdf_link&utm_campaign=angularcheatsheet

Angular Cheat Sheet: Zero To Mastery 1

Angular Cheat Sheet: Zero To
Mastery
TABLE OF CONTENTS
Starting a New Project

Installing a Library

Creating Components

Lifecycle Hooks

Services

Modules

Angular Directives

Attribute Directives

Structural Directives

Custom Directives

Pipes

Decorators

Useful Links

Angular Cheat Sheet: Zero To Mastery 2

Starting a New Angular Project
Before starting a new project, Node.js must be installed on your machine. Next, Angular
has an official CLI tool for managing projects. It can be installed with NPM or Yarn.

NPM
npm install -g @angular/cli

Yarn
yarn global add @angular/cli

Afterward, we can create a new project with the following command:

ng new my-app

Angular will prompt you to configure the project. For the default settings, you can press
the Enter or Return keys. During the installation process, Angular will scaffold a default
project with packages for running Angular.

You can run a project with either command:

Development
ng serve

Production
ng build --prod

Installing a Library
Without a doubt, you will find yourself installing 3rd party libraries from other developers.
Packages optimized for Angular may be installed with a special command that will
install and configure a package with your project. If a package is not optimized for
Angular, you have the option of installing it the traditional way.

Installation + Configuration
ng add @angular/material

Installation
npm install @angular/material

Creating Components
Components are the buildings blocks of an application. You can think of them as a
feature for teaching browsers new HTML tags with custom behavior. Components can
be created with the CLI. Typically, Angular offers a shorthand command for those who
prefer to be efficient.

https://nodejs.org/en/

Angular Cheat Sheet: Zero To Mastery 3

Common
ng generate component MyComponent

Shorthand
ng g c MyComponent

Angular will generate the component files in a directory of the same name. You can
expect the following.

*.component.html - The template of the component that gets displayed when the
component is rendered.

*.component.css - The CSS of a component, which is encapsulated.

*.component.js - The business logic of a component to dictate its behavior.

*.component.spec.js - A test file for validating the behavior and output of a
component.

Along with creating the files, component classes are decorated with the @Component
decorator and registered with the closest module. Here are some common helpful
options:

Option Example Description

--dry-

run (-
d)

ng g c
MyComponent -d

Does not output the result. Useful for keeping your
command line clean.

--
export

ng g c
MyComponent --
export

Exports the component in the module's exports option.

--force

(f)
ng g c
MyComponent --f

Forces a component to be created even if it already
exists. Useful for overwriting files.

--help ng g c --help Outputs a complete list of options for a given command.
--
prefix

(-p)

ng g c
MyComponent -
p=base

Custom prefix for a component's HTML selector

--skip-
tests

ng g c
MyComponent --
skip-tests

Skips creating the **.spec.ts file.

--style
ng g c
MyComponent --
style=scss

A file extension or preproccessor for the style files. Can
be set to 'none' to skip generating a style file.

https://www.notion.so/1d2e1cde5f6b444b8d721ecb7d748a46
https://www.notion.so/6fe04a67c24345aa9303459f01062050
https://www.notion.so/46db51ac3a61481892144c6e6ce61781
https://www.notion.so/c52e86930b9c41acafbb0dcfc1876d3d
https://www.notion.so/8e27deb791ea421fa2bedfa586321920
https://www.notion.so/949db7a2b66d4310902b78f102d9afe4
https://www.notion.so/b995a72bacc54dd29c2eed9a32ea1fa3

Angular Cheat Sheet: Zero To Mastery 4

Lifecycle Hooks
Components emit events during and after initialization. Angular allows us to hook into
these events by defining a set of methods in a component's class. You can dive deeper
into hooks here.

Here's a quick rundown on the lifecycle hooks available:

ngOnChanges : Runs after an input/output binding has been changed.

ngOnInit : Runs after a component has been initialized. Input bindings are ready.

ngDoCheck : Allows developers to perform custom actions during change detection.

ngAfterContentInit : Runs after the content of a component has been initialized.

ngAfterContentChecked : Runs after every check of a component's content.

ngAfterViewInit : Runs after the view of a component has been initialized.

ngAfterViewChecked : Runs after every check of a component's view.

ngOnDestroy : Runs before a component is destroyed.

Services
Services are objects for outsourcing logic and data that can be injected into our
components. They're handy for reusing code in multiple components. For medium-sized
apps, they can serve as an alternative to state management libraries.

We can create services with commands:

Common
ng generate service MyService

Shorthand
ng g s MyService

Services are not standalone. Typically, they're injected into other areas of our app. Most
commonly in components. There are two steps for injecting a service. First, we must
add the @Injectable() decorator.

import { Injectable } from '@angular/core';

@Injectable()
export class MyService {
 constructor() { }
}

https://angular.io/guide/lifecycle-hooks

Angular Cheat Sheet: Zero To Mastery 5

Secondly, we must tell Angular where to inject this class. There are three options at our
disposal.

1. Injectable Decorator

This option is the most common route. It allows the service to be injectable anywhere in
our app.

@Injectable({
 providedIn: 'root'
})

2. Module

This option allows a service to be injectable in classes that are imported in the same
module.

@NgModule({
 declarations: [],
 imports: [],
 providers: [MyService}],
 bootstrap: []
})

3. Component Class

This option allows a service to be injectable in a single component class.

@Component({
 providers: [MyService]
})

Once you've got those two steps settled, a service can be injected into the constructor()
function of a class:

import { Component } from '@angular/core';

@Component({
 selector: 'app-example',
 template: '<p>Hello World</p>',
 styleUrls: ['./example.component.css']
})
export class ExampleComponent {
 constructor(private myService: MyService) { }
}

Modules
Angular enhances JavaScript's modularity with its own module system. Classes
decorated with the @NgModule() decorator can register components, services, directives,
and pipes.

Angular Cheat Sheet: Zero To Mastery 6

The following options can be added to a module:

declarations - List of components, directives, and pipes that belong to this module.

imports - List of modules to import into this module. Everything from the imported
modules is available to declarations of this module.

exports - List of components, directives, and pipes visible to modules that import
this module.

providers - List of dependency injection providers visible both to the contents of this
module and to importers of this module.

bootstrap - List of components to bootstrap when this module is bootstrapped.

Here's an example of a module called AppModule .

import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppRoutingModule } from './app-routing.module';
import { AppComponent } from './app.component';

@NgModule({
 declarations: [
 AppComponent
],
 imports: [
 BrowserModule,
 AppRoutingModule
],
 providers: [],
 bootstrap: [AppComponent]
})
export class AppModule { }

Angular Directives
Directives are custom attributes that can be applied to elements and components to
modify their behavior. There are two types of directives: attribute directives and
structural directives.

Attribute Directives
An attribute directive is a directive that changes the appearance or behavior of an
element, component, or another directive. Angular exports the following attribute
directives:

Angular Cheat Sheet: Zero To Mastery 7

NgClass

Adds and removes a set of CSS classes.

<!-- toggle the "special" class on/off with a property -->
<div [ngClass]="isSpecial ? 'special' : ''">This div is special</div>

NgStyle

Adds and removes a set of HTML styles.

<div [ngStyle]="{
 'font-weight': 2 + 2 === 4 ? 'bold' : 'normal',
}">
 This div is initially bold.
</div>

NgModel

Adds two-way data binding to an HTML form element. Firstly, this directive requires the
FormsModule to be added to the @NgModule() directive.

import { FormsModule } from '@angular/forms'; // <--- JavaScript import from Angular
/* . . . */
@NgModule({
 /* . . . */
 imports: [
 BrowserModule,
 FormsModule // <--- import into the NgModule
],
 /* . . . */
})
export class AppModule { }

Secondly, we can bind the [(ngModel)] directive on an HTML <form> element and set it
equal to the property.

<label for="example-ngModel">[(ngModel)]:</label>
<input [(ngModel)]="currentItem.name" id="example-ngModel">

The `NgModel` directive has more customizable options that can be [found here]
(https://angular.io/guide/built-in-directives#displaying-and-updating-properties-with-
ngmodel).

Structural Directives
Structural directives are directives that change the DOM layout by adding and removing
DOM elements. Here are the most common structural directives in Angular:

NgIf

A directive that will conditionally create or remove elements from the template. If the
value of the NgIf directive evaluates to false , Angular removes the element.

Angular Cheat Sheet: Zero To Mastery 8

<p *ngIf="isActive">Hello World!</p>

NgFor

Loops through an element in a list/array.

<div *ngFor="let item of items">{{item.name}}</div>

NgSwitch

An alternative directive for conditionally rendering elements. This directive acts very
similarly to the JavaScript switch statement. There are three directives at our disposal:

NgSwitch — A structural directive that should be assigned the value that should be
matched against a series of conditions.

NgSwitchCase — A structural directive that stores a possible value that will be
matched against the NgSwitch directive.

NgSwitchDefault — A structural directive that executes when the expression doesn't
match with any defined values.

<ul [ngSwitch]="food">
 <li *ngSwitchCase="'Burger'">Burger
 <li *ngSwitchCase="'Pizza'">Pizza
 <li *ngSwitchCase="'Spaghetti'">Spaghetti
 <li *ngSwitchDefault>French Fries

Custom Directives
We're not limited to directives defined by Angular. We can create custom directives with
the following command:

Common
ng generate directive MyDirective

Shorthand
ng g d MyDirective

To identify directives, classes are decorated with the @Directive() decorator. Here's
what a common directive would look like:

import { Directive, ElementRef } from '@angular/core';

@Directive({
 selector: '[appMyDirective]'
})
export class appMyDirective {
 constructor(private elRef: ElementRef) {
 eleRef.nativeElement.style.background = 'red';

Angular Cheat Sheet: Zero To Mastery 9

 }
}

Pipes
Pipes are known for transforming content but not directly affecting data. They're mainly
utilized in templates like so:

{{ 'Hello world' | uppercase }}

Angular has a few pipes built-in.

DatePipe

Formats a date value according to locale rules.

{{ value_expression | date 'short' }}

UpperCasePipe

Transforms text to all upper case.

{{ 'Hello world' | uppercase }}

LowerCasePipe

Transforms text to all lower case.

{{ 'Hello World' | lowercase }}

CurrencyPipe

Transforms a number to a currency string, formatted according to locale rules.

{{ 1.3495 | currency:'CAD' }}

DecimalPipe

Transforms a number into a string with a decimal point, formatted according to locale
rules.

{{ 3.14159265359 | number }}

PercentPipe

Transforms a number to a percentage string, formatted according to locale rules.-

{{ 0.259 | percent }}

Decorators
Angular exports dozens of decorators that can be applied to classes and fields. These
are some of the most common decorators you'll come across.

Angular Cheat Sheet: Zero To Mastery 10

Decorator Example DescriptionDecorator Example Description

@Input() @Input() myProperty
A property can be updated through
property binding.

@Output()
@Output() myEvent = new
EventEmitter();

A property that can fire events and
can be subscribed to with event
binding on a component.

@HostBinding()
@HostBinding('class.valid')
isValid

Binds a host element property (here,
the CSS class valid) to a
directive/component property
(isValid).

@HostListener()
@HostListener('click',
['$event']) onClick(e) {...}

A directive for subscribing to an
event on a host element, such as a
click event, and run a method when
that event is emitted. You can
optionally accept the $event object.

@ContentChild()
@ContentChild(myPredicate)
myChildComponent;

Binds the first result of the
component content query
(myPredicate) to a property
(myChildComponent) of the class.

@ContentChildren()
@ContentChildren(myPredicate)
myChildComponents;

Binds the results of the component
content query (myPredicate) to a
property (myChildComponents) of the
class.

@ViewChild()
@ViewChild(myPredicate)
myChildComponent;

Binds the first result of the
component view query (myPredicate)
to a property (myChildComponent) of
the class. Not available for
directives.

@ViewChildren()
@ViewChildren(myPredicate)
myChildComponents;

Binds the results of the component
view query (myPredicate) to a
property (myChildComponents) of the
class. Not available for directives.

Useful Links
Angular Documentation

Angular Devtools

https://www.notion.so/2888cde6f5814d5c92595b978acda349
https://www.notion.so/81a9512e66ec47178ed1c92e97605d12
https://www.notion.so/4c604bba240b40199ac6fced30eb9ed5
https://www.notion.so/18cd8a90e0b04fbea5e53d49f97f07e1
https://www.notion.so/ca6bc40ddbc040638a79d90ff86983fa
https://www.notion.so/63b6319308f44e03a9db8aef1300cd9a
https://www.notion.so/589043aba6fc4f818de56c0ded7aa6ae
https://www.notion.so/fd1b5290b81748909c004063cb0b9940
https://angular.io/docs
https://angular.io/guide/devtools

Angular Cheat Sheet: Zero To Mastery 11

Angular API Reference

Angular Blog

Angular Routing

Angular Forms

ZTM Angular Bootcamp

Back To Top

https://angular.io/api
https://blog.angular.io/
https://angular.io/guide/routing-overview
https://angular.io/guide/forms-overview
https://academy.zerotomastery.io/p/learn-angular?utm_source=pdf_content&utm_medium=pdf_link&utm_campaign=angularcheatsheet

